Python人脸识别考勤打卡系统
如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助!
运行结果如下:
主要代码:
- import random
- import cv2
- import numpy
- import datetime
- import os
- import time
- import cv2 as cv
- import numpy as np
- import threading
- from PIL import Image, ImageFont, ImageDraw
-
- database_file_path = './resources/data.db'
- picture_dir_path = "./resources/pictures"
- trainer_file_path = './resources/Trainer/trainer.yml'
- font_file_path = './resources/simsun.ttc'
- zsc_circle_file_path = './resources/zsc.jpg'
- zsc_rectangle_file_path = './resources/zsc.png'
- haarcascade_frontalface_file_path = './resources/haarcascade_frontalface_default.xml'
- capture_opt = 0 # 摄像头参数,0,1为本机摄像头
-
- # 继承wx库里面的Frame类来使用
- class MainFrame(wx.Frame):
- def __init__(self):
- # 初始化窗体数据
- wx.Frame.__init__(self, None, -1, '人脸识别考勤系统', pos=(100, 100), size=(1337, 600))
- panel = wx.Panel(self, -1)
- sizer = wx.BoxSizer(wx.HORIZONTAL)
- sizer1 = wx.BoxSizer(wx.VERTICAL)
- sizer2 = wx.BoxSizer(wx.VERTICAL)
- font = wx.Font(15, wx.ROMAN, wx.NORMAL, wx.BOLD)
-
- # 设置窗口以及托盘图标
- icon = wx.Icon()
- icon.CopyFromBitmap(wx.Bitmap(wx.Image((zsc_circle_file_path), wx.BITMAP_TYPE_JPEG)))
- self.SetIcon(icon)
-
- # 设置左边背景学院logo
- image = wx.Image(zsc_rectangle_file_path, wx.BITMAP_TYPE_PNG).ConvertToBitmap()
- self.background = wx.StaticBitmap(panel, -1, bitmap=image, style=wx.ALIGN_CENTER)
- sizer1.Add(self.background, proportion=10, flag=wx.ALIGN_CENTER, border=10)
-
- # 设置采集人脸按钮
- self.command1 = wx.Button(panel, -1, '采集人脸')
- self.command1.SetFont(font)
- self.command1.SetBackgroundColour('#3299CC')
- sizer1.Add(self.command1, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)
-
- # 设置训练数据按钮
- self.command2 = wx.Button(panel, -1, '训练数据')
- self.command2.SetFont(font)
- self.command2.SetBackgroundColour('#DBDB70')
- sizer1.Add(self.command2, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)
-
- # 设置人脸识别按钮
- self.command3 = wx.Button(panel, -1, '识别打卡')
- self.command3.SetFont(font)
- self.command3.SetBackgroundColour('#32CC32')
- sizer1.Add(self.command3, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)
-
- # 设置退出系统按钮
- self.command4 = wx.Button(panel, -1, '关闭摄像头')
- self.command4.SetFont(font)
- self.command4.SetBackgroundColour((random.randint(1, 255), random.randint(0, 255), random.randint(0, 255)))
- sizer1.Add(self.command4, proportion=5, flag=wx.ALL | wx.EXPAND, border=10)
-
- # 设置消息提示文本
- self.text5 = wx.StaticText(panel, -1, '\n\n', style=wx.ALIGN_CENTER)
- self.text5.SetFont(font)
- self.text5.SetForegroundColour('Red')
- sizer1.Add(self.text5, proportion=15, flag=wx.ALL | wx.EXPAND, border=10)
-
- # 设置个人信息文本
- self.text6 = wx.StaticText(panel, -1, '姓名:')
- self.text7 = wx.StaticText(panel, -1, '学号:')
- self.text8 = wx.StaticText(panel, -1, '学院:')
- sizer1.Add(self.text6, proportion=3, flag=wx.LEFT, border=0)
- sizer1.Add(self.text7, proportion=3, flag=wx.LEFT, border=0)
- sizer1.Add(self.text8, proportion=3, flag=wx.LEFT, border=0)
-
- # 把分布局全部加入整体顶级布局
- sizer.Add(sizer1, flag=wx.EXPAND | wx.ALL, border=20)
-
-
- # 设置右上边消息提示文本
- sizer3 = wx.BoxSizer(wx.HORIZONTAL)
- font = wx.Font(12, wx.ROMAN, wx.NORMAL, wx.BOLD)
- self.text9 = wx.StaticText(panel, -1, '', style=wx.ALIGN_LEFT)
- self.text9.SetFont(font)
- self.text9.SetForegroundColour('brown')
- self.text9.SetLabel(u''+'您好,欢迎使用人脸考勤系统!')
-
- self.text10 = wx.StaticText(panel, -1, '', style=wx.ALIGN_RIGHT)
- self.text10.SetFont(font)
- self.text10.SetForegroundColour('Blue')
- self.data_num = 0
- self.updateSumData()
- sizer3.Add(self.text9, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)
- sizer3.Add(self.text10, proportion=1, flag= wx.ALL|wx.EXPAND, border=10)
-
- sizer2.Add(sizer3, proportion=1, flag=wx.EXPAND | wx.ALL, border=0)
-
- # 封面图片
- self.image_cover = wx.Image(zsc_circle_file_path, wx.BITMAP_TYPE_ANY).Scale(575, 460)
- self.bmp = wx.StaticBitmap(panel, -1, wx.Bitmap(self.image_cover))
- sizer2.Add(self.bmp, proportion=1, flag=wx.ALL|wx.EXPAND ,border=0)
-
-
- # 加入顶级布局
- sizer.Add(sizer2, flag=wx.EXPAND | wx.ALL, border=10)
-
- # 实例化数据库操作对象
- self.mySqlDao = MySQLDao(self)
- self.grid = MyGrid(panel, self.mySqlDao)
- self.grid.updateGrid()
- # 打卡记录表
- sizer.Add(self.grid, proportion=1, flag=wx.EXPAND | wx.ALL, border=10)
-
-
- panel.SetSizer(sizer)
-
- # 四个按钮对应的事件
- self.command1.Bind(wx.EVT_BUTTON, self.command1_event)
- self.command4.Bind(wx.EVT_BUTTON, self.command4_event)
- self.command3.Bind(wx.EVT_BUTTON, self.command3_event)
- self.command2.Bind(wx.EVT_BUTTON, self.command2_event)
-
- # 关闭事件
- self.Bind(wx.EVT_CLOSE,self.onClose)
-
- # 窗口居中,显示
- self.Center()
- self.Show()
-
- # 控制摄像头的开启与关闭
- self.recognition = False
- self.collected = False
-
- '''
- 主窗体关闭事件
- '''
- def onClose(self,event):
- self.command4_event(event)
- # 等待子线程完成 再关闭,防止不正常退出
- time.sleep(1)
- self.Destroy()
-
- '''
- 采集数据按钮的响应事件
- '''
- def command1_event(self, event):
- self.text6.SetLabel('姓名:')
- self.text7.SetLabel('学号:')
- self.text8.SetLabel('学院:')
- self.text5.SetLabel(u'\n温馨提示:\n' + '⚪正在进学生信息录入...')
- self.text5.Update()
-
- collectFrame = CollectFrame(self,self.mySqlDao)
- collectFrame.Show()
-
- '''
- 训练数据按钮的响应事件
- '''
- def command2_event(self, event):
- self.trainData()
-
- '''
- 识别打卡按钮的响应事件
- '''
- def command3_event(self, event):
- self.text5.SetLabel(u'')
- self.recognition = False
- t1 = threading.Thread(target=self.recognitionFace)
- t1.start()
-
- '''
- 关闭摄像头按钮的响应事件
- '''
- def command4_event(self, event):
- if self.collected == False:
- self.collected = True
- if self.recognition == False:
- self.recognition = True
-
-
-
-
- def updateSumData(self):
- self.data_num = 0
- for list in os.listdir(picture_dir_path):
- if len(os.listdir(picture_dir_path + '/' + list)) >= 200:
- self.data_num += 1
- self.text10.SetLabel(u'当前已采集人脸数据的人数:' + str(self.data_num))
- self.text10.Update()
-
-
- '''
- @Author:Himit_ZH
- @Function:处理收集人脸每一帧生成图片存入对应文件夹
- '''
- def collect(self,face_id):
-
- self.text5.SetLabel(u'\n温馨提示:\n' + '请看向摄像头\n准备采集200张人脸图片...')
-
- count = 0 # 统计照片数量
- path = picture_dir_path+"/Stu_" + str(face_id) # 人脸图片数据的储存路径
- # 读取视频
- cap = cv.VideoCapture(capture_opt)
- print(cap.isOpened())
- if cap.isOpened() == False:
- self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n原因:未能成功打开摄像头')
- return
-
- # 加载特征数据
- face_detector = cv.CascadeClassifier(haarcascade_frontalface_file_path)
- if not os.path.exists(path): # 如果没有对应文件夹,自动生成
- os.makedirs(path)
- while self.collected == False:
- flag, frame = cap.read()
- # print('flag:',flag,'frame.shape:',frame.shape)
- if not flag:
- break
- # 将图片灰度
- gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
- faces = face_detector.detectMultiScale(gray, 1.1, 3)
- if len(faces) > 1: # 一帧出现两张照片丢弃,原因:有人乱入,也有可能人脸识别出现差错
- continue
- # 框选人脸,for循环保证一个能检测的实时动态视频流
- for x, y, w, h in faces:
- cv.rectangle(frame, (x, y), (x + w, y + h), color=(0, 255, 0), thickness=2)
- count += 1
- cv.imwrite(path + '/' + str(count) + '.png', gray[y:y + h, x:x + w])
- # # 显示图片
- # cv.imshow('Camera', frame)
- # 将一帧帧图片显示在UI中
- image1 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- image2 = cv2.resize(image1, (575, 460))
- height, width = image2.shape[:2]
- pic = wx.Bitmap.FromBuffer(width, height, image2)
- # 显示图片在panel上
- self.bmp.SetBitmap(pic)
- self.bmp.Update()
-
- self.text9.SetLabel(u'温馨提示:\n' + '已采集'+ str(count)+'张人脸照片')
- if count >= 200: #默认采集200张照片
- break
- # 关闭资源
- if count >=200:
- self.text5.SetLabel(u'\n温馨提示:\n' + '✔已成功采集到人脸数据!')
- self.updateSumData()
- else:
- self.text5.SetLabel(u'\n错误提示:\n' + '×采集人脸数据失败!\n未能收集到200张人脸数据!')
- # 删除该文件夹下的所有数据
- ls = os.listdir(path)
- for file_path in ls:
- f_path = os.path.join(path, file_path)
- os.remove(f_path)
- os.rmdir(path)
-
- cv.destroyAllWindows()
- cap.release()
- self.bmp.SetBitmap(wx.Bitmap(self.image_cover))
-
- '''
- @Author:Himit_ZH
- @Function:遍历指定文件夹里面的人脸数据,根据文件夹名字,训练对应数据
- '''
- def trainData(self):
- self.text5.SetLabel(u'\n温馨提示:\n' + '⚪正在整合训练的人脸数据\n请稍后...')
- # 图片路径
- path = picture_dir_path
- facesSamples = []
- imageFiles = []
- ids = []
- for root, dirs, files in os.walk(path):
- # root 表示当前正在访问的文件夹路径
- # dirs 表示该文件夹下的子目录名list
- # files 表示该文件夹下的文件list
- # 遍历文件
- for file in files:
- imageFiles.append(os.path.join(root, file))
- # 检测人脸的模型数据
- face_detector = cv2.CascadeClassifier(haarcascade_frontalface_file_path)
- # 遍历列表中的图片
- stu_map = self.mySqlDao.getIdfromSql()
- for imagefile in imageFiles: # 获得所有文件名字
- imagefile = imagefile.replace('\\', '/')
- sno = imagefile.split('/')[3].split('_')[1]
- if stu_map.get(sno):
- PIL_img = Image.open(imagefile).convert('L') # 打开图片并且转为灰度图片
- # 将图像转换为数组
- img_numpy = np.array(PIL_img, 'uint8')
- faces = face_detector.detectMultiScale(img_numpy)
- for x, y, w, h in faces:
- facesSamples.append(img_numpy[y:y + h, x:x + w])
- ids.append(int(stu_map.get(sno)))
-
-
-
-
- if __name__ == '__main__':
- app = wx.App()
- app.locale = wx.Locale(wx.LANGUAGE_CHINESE_SIMPLIFIED)
- frame = MainFrame()
- app.MainLoop()
运行结果如下:
Python, C++, PHP语言学习参考实例连接:
C++学习参考实例:
C++实现图形界面五子棋游戏源码:
https://blog.csdn.net/alicema1111/article/details/90035420
C++实现图形界面五子棋游戏源码2:
https://blog.csdn.net/alicema1111/article/details/106479579
C++ OpenCV相片视频人脸识别统计人数:
https://blog.csdn.net/alicema1111/article/details/105833928
VS2017+PCL开发环境配置:
https://blog.csdn.net/alicema1111/article/details/106877145
VS2017+Qt+PCL点云开发环境配置:
https://blog.csdn.net/alicema1111/article/details/105433636
C++ OpenCV汽车检测障碍物与测距:
https://blog.csdn.net/alicema1111/article/details/105833449
Windows VS2017安装配置PCL点云库:
https://blog.csdn.net/alicema1111/article/details/105111110
VS+VTK+Dicom(dcm)+CT影像切片窗体界面显示源码
https://blog.csdn.net/alicema1111/article/details/106994839
Python学习参考实例:
Python相片更换背景颜色qt窗体程序:
https://blog.csdn.net/alicema1111/article/details/106919140
OpenCV汽车识别检测数量统计:
https://blog.csdn.net/alicema1111/article/details/106597260
OpenCV视频识别检测人数跟踪统计:
https://blog.csdn.net/alicema1111/article/details/106113042
OpenCV米粒检测数量统计:
https://blog.csdn.net/alicema1111/article/details/106089697
opencv人脸识别与变形哈哈镜:
https://blog.csdn.net/alicema1111/article/details/105833123
OpenCV人脸检测打卡系统:
https://blog.csdn.net/alicema1111/article/details/105315066
Python+OpenCV摄像头人脸识别:
https://blog.csdn.net/alicema1111/article/details/105107286
Python+Opencv识别视频统计人数:
https://blog.csdn.net/alicema1111/article/details/103804032
Python+OpenCV图像人脸识别人数统计:
https://blog.csdn.net/alicema1111/article/details/105378639
python人脸头发身体部位识别人数统计:
https://blog.csdn.net/alicema1111/article/details/116424942
VS+QT+VTK三维网格图像显示GUI
https://blog.csdn.net/alicema1111/article/details/117060734
PHP网页框架:
PHP Laravel框架安装与配置后台管理前台页面显示:
https://blog.csdn.net/alicema1111/article/details/106686523